Rotary Measuring Technology Incremental shaft encoder

High resolution Type ESI 58HA

- Sturdy model to industry standard, Ø58 mm housing
- Resolution up to 36000 ppr (internally interpolated)
- Pulse frequency up to 800 kHz
- Temperature and ageing compensation
- Short-circuit proof outputs
- Reverse connection protection (at U_R= 10 ... 30 V DC)
- Highly flexible PUR-cable

- High shaft load
- Many variations, also customized versions
- Alarm output (optional)
- (Ex) available as explosion proof zone 2 and 22

Mechanical characteristics:

Speed:	max. 12000 min ⁻¹
Rotor moment of inertia:	approx. 1.8 x 10 ⁻⁶ kgm ²
Starting torque:	< 0.01 Nm
Radial load capacity of shaft*:	80 N
Axial load capacity of shaft:*:	40 N
Weight:	approx. 0.4 kg
Protection acc. to EN 60 529:	IP 65
Working temperature:	-20 °C +85 °C ¹⁾²⁾
Operating temperature:	-20 °C +90 °C ¹⁾²⁾
Shaft:	stainless steel
Shock resistance acc. to DIN-IEC 68-2-27	1000 m/s ² , 6 ms
Vibration resistance acc. to IEC 68-2-6:	100 m/s ² , 10 2000 Hz

Pulse rates available at short notice:

6000, 7200, 8000, 8192, 9000, 10000, 18000, 25000, 36000

Other pulse rates on request

Electrical characteristics:

Output circuit:	RS 422 (TTL-compatible)	Push-pull
Supply voltage:	5 V (±5%) or 10 30 V DC 10 30 V DC	
Power consumption (no load)	-	typ. 90 mA /
without inverted signal:		max. 135 mA
Power consumption (no load)	typ. 70 mA /	typ. 115 mA/
with inverted signals:	max. 120 mA	max.160 mA
Permissible load/channel:	max. ±20 mA	max. ±30 mA
Pulse frequency:	max. 800 kHz	max. 600 kHz
Signal level high:	min. 2.5 V	min. U _B – 2.5 V
Signal level low:	max. 0.5 V	max. 2.0 V
Rise time t _r	max. 200 ns	max. 1 μs
Fall time t _f	max. 200 ns	max. 1 μs
Short circuit proof outputs:1)	yes ²⁾	yes
Reverse connection protection at UB:	no; 10 30 V: yes	yes
Conforms to CE requirements acc. to EN 61000-	6-1, EN 61000-6-4 and EN 61000-6-3	

¹⁾ If supply voltage correctly applied

(If UB=5 V, short-circuit to channel, 0 V, or +UB is permitted) (If UB=5-30 V, short-circuit to channel or 0 V is permitted)

Terminal assignment

Signal:	0V	0V	+U _B	+U _B	Α	Ā	В	B	0	0	Shield
		Sensor2)		Sensor2)							
12 pin plug, Pin:	10	11	12	2	5	6	8	1	3	4	PH ¹⁾
Cable colour:	WH	WH	BN	BN	GN	YE	GY	PK	BU	RD	
	0.5 mm ²		0.5 mm ²								

¹⁾ PH = Shield is attached to connector housing

^{*} View also diagrams on page 25

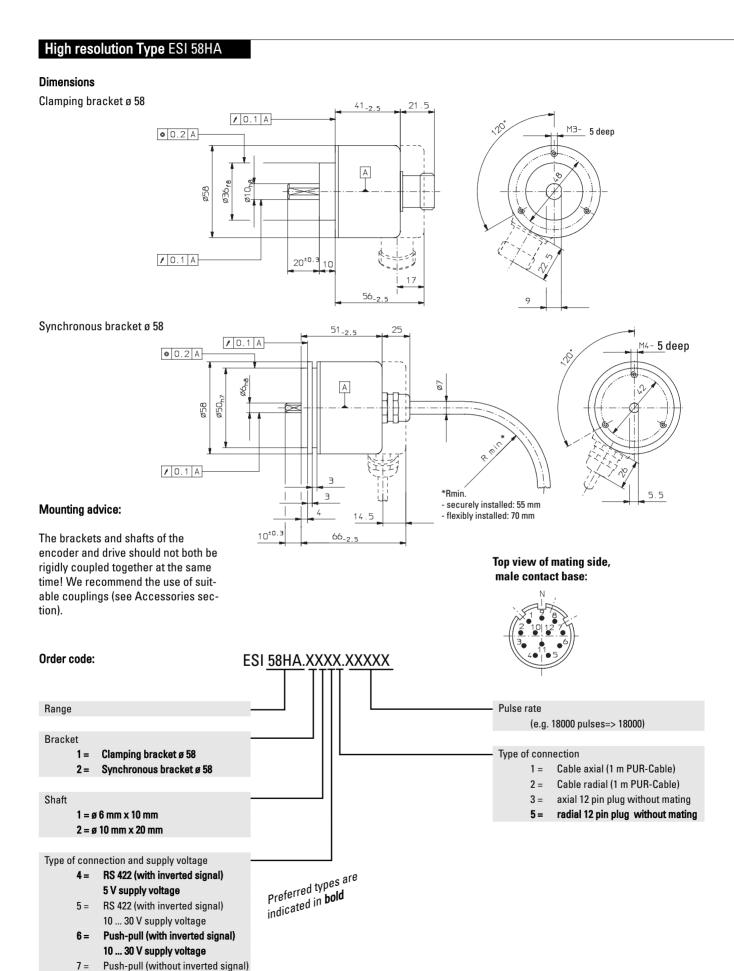
¹⁾ Constant trailing: -20 ... +70 °C

²⁾ Non-condensing

²⁾ Only one channel allowed to be shorted-out:

²⁾ Sensor cables are connected to the supply voltage internally if long feeder cables are involved they can be used to adjust or control the voltage at the encoder

⁻ If sensor cables are not in use, they have to be insulated or 0 V_{Sensor} has to be connected to 0 V and U_{BSensor} has to be connected to UR


⁻ Using RS 422 outputs and long cable distances, a wave impedance has to be applied at each cable end.

Insulate unused outputs before initial startup.

Rotary Measuring Technology Incremental shaft encoder

10 ... 30 V Supply voltage

